Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
2
2023-029
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
2023-029
2023-029
Commits
08c7f16f
Commit
08c7f16f
authored
Oct 29, 2023
by
Janith Gamage
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix: update
parent
2098c101
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
193 additions
and
11 deletions
+193
-11
Project/Backend/Server_Node/prediction_config/default/default.py
.../Backend/Server_Node/prediction_config/default/default.py
+41
-0
Project/Backend/Server_Node/prediction_config/default/default_v1.py
...ckend/Server_Node/prediction_config/default/default_v1.py
+143
-0
Project/Backend/Server_Node/prediction_config/default/original_image.jpeg
...Server_Node/prediction_config/default/original_image.jpeg
+0
-0
Project/Backend/Server_Node/prediction_config/default/user_input_image.jpeg
...rver_Node/prediction_config/default/user_input_image.jpeg
+0
-0
Project/Backend/Server_Node/server.js
Project/Backend/Server_Node/server.js
+9
-11
Project/Backend/Server_Python/resources/audio.wav
Project/Backend/Server_Python/resources/audio.wav
+0
-0
No files found.
Project/Backend/Server_Node/prediction_config/default/default.py
0 → 100644
View file @
08c7f16f
import
tensorflow
as
tf
import
cv2
import
numpy
as
np
# Load a pre-trained deep learning model for feature extraction
model
=
tf
.
keras
.
applications
.
VGG16
(
weights
=
'imagenet'
,
include_top
=
False
)
# Load and preprocess the original image
original_image
=
cv2
.
imread
(
'original_image.jpeg'
)
original_image
=
cv2
.
resize
(
original_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
original_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
original_image
)
original_image
=
np
.
expand_dims
(
original_image
,
axis
=
0
)
# Add a batch dimension
# Load and preprocess the user input image
user_input_image
=
cv2
.
imread
(
'user_input_image.jpeg'
)
user_input_image
=
cv2
.
resize
(
user_input_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
user_input_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
user_input_image
)
user_input_image
=
np
.
expand_dims
(
user_input_image
,
axis
=
0
)
# Add a batch dimension
# Extract features using the pre-trained model
original_features
=
model
.
predict
(
original_image
)
user_input_features
=
model
.
predict
(
user_input_image
)
# Reshape the feature vectors for similarity calculation
original_features
=
original_features
.
reshape
((
original_features
.
shape
[
0
],
-
1
))
user_input_features
=
user_input_features
.
reshape
((
user_input_features
.
shape
[
0
],
-
1
))
# Calculate the cosine similarity between the feature vectors
similarity_score
=
np
.
dot
(
original_features
,
user_input_features
.
T
)
/
(
np
.
linalg
.
norm
(
original_features
)
*
np
.
linalg
.
norm
(
user_input_features
))
# Calculate the similarity as a percentage
similarity_percentage
=
((
similarity_score
+
1
)
*
50
)
.
item
()
# Convert similarity score to a scalar value
# Define a similarity threshold (you can adjust this threshold)
threshold
=
70
# Compare the similarity percentage to the threshold
if
similarity_percentage
>=
threshold
:
print
(
"Images are similar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
else
:
print
(
"Images are dissimilar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
\ No newline at end of file
Project/Backend/Server_Node/prediction_config/default/default_v1.py
0 → 100644
View file @
08c7f16f
import
tensorflow
as
tf
import
cv2
import
numpy
as
np
from
sklearn.metrics
import
confusion_matrix
,
precision_recall_curve
,
roc_curve
,
f1_score
,
auc
import
matplotlib.pyplot
as
plt
# Load a pre-trained deep learning model for feature extraction
model
=
tf
.
keras
.
applications
.
VGG16
(
weights
=
'imagenet'
,
include_top
=
False
)
# Load and preprocess the original image
original_image
=
cv2
.
imread
(
'original_image.jpeg'
)
original_image
=
cv2
.
resize
(
original_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
original_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
original_image
)
original_image
=
np
.
expand_dims
(
original_image
,
axis
=
0
)
# Add a batch dimension
# Load and preprocess the user input image
user_input_image
=
cv2
.
imread
(
'user_input_image.jpeg'
)
user_input_image
=
cv2
.
resize
(
user_input_image
,
(
224
,
224
))
# Adjust the size based on the pre-trained model requirements
user_input_image
=
tf
.
keras
.
applications
.
vgg16
.
preprocess_input
(
user_input_image
)
user_input_image
=
np
.
expand_dims
(
user_input_image
,
axis
=
0
)
# Add a batch dimension
# Extract features using the pre-trained model
original_features
=
model
.
predict
(
original_image
)
user_input_features
=
model
.
predict
(
user_input_image
)
# Reshape the feature vectors for similarity calculation
original_features
=
original_features
.
reshape
((
original_features
.
shape
[
0
],
-
1
))
user_input_features
=
user_input_features
.
reshape
((
user_input_features
.
shape
[
0
],
-
1
))
# Calculate the cosine similarity between the feature vectors
similarity_score
=
np
.
dot
(
original_features
,
user_input_features
.
T
)
/
(
np
.
linalg
.
norm
(
original_features
)
*
np
.
linalg
.
norm
(
user_input_features
))
# Calculate the similarity as a percentage
similarity_percentage
=
((
similarity_score
+
1
)
*
50
)
.
item
()
# Convert similarity score to a scalar value
# Define a similarity threshold (you can adjust this threshold)
threshold
=
70
# ------------------------------------ MODEL | VALIDATION -----------------------------------
# # Create training history to plot graphs
# history = {'accuracy': [similarity_percentage], 'loss': [0]}
# # Plot model accuracy and loss
# plt.figure(figsize=(12, 5))
# plt.subplot(1, 2, 1)
# plt.plot(history['accuracy'])
# plt.title('Model Accuracy')
# plt.xlabel('Epoch')
# plt.ylabel('Accuracy (%)')
# plt.subplot(1, 2, 2)
# plt.plot(history['loss'])
# plt.title('Model Loss')
# plt.xlabel('Epoch')
# plt.ylabel('Loss')
# plt.show()
# # Print similarity percentage
# print("Similarity Percentage: {:.2f}%".format(similarity_percentage))
# # Create ground truth labels (e.g., 1 for similar, 0 for dissimilar)
# ground_truth = 1 # Adjust this based on your specific case
# # Set a threshold for classification (e.g., 0.5 for binary classification)
# classification_threshold = 0.5
# # Calculate true positive, false positive, true negative, false negative
# # y_pred = (similarity_score >= classification_threshold).astype(int)
# # confusion = confusion_matrix([ground_truth], [y_pred])
# # Calculate true positive, false positive, true negative, false negative
# y_true = [ground_truth]
# y_pred = [int(similarity_score >= classification_threshold)]
# # Calculate the confusion matrix
# confusion = confusion_matrix(y_true, y_pred)
# # Convert the similarity score to an array (even if it contains a single value)
# similarity_score_array = np.array([similarity_score])
# # Calculate precision and recall using precision_recall_curve
# precision, recall, _ = precision_recall_curve([ground_truth], similarity_score_array)
# # Compute precision and recall
# # precision, recall, _ = precision_recall_curve([ground_truth], [similarity_score])
# # Compute ROC curve
# fpr, tpr, _ = roc_curve([ground_truth], [similarity_score])
# # Calculate the F1 score
# f1 = f1_score([ground_truth], [y_pred])
# # Compute the area under the ROC curve (AUC)
# roc_auc = auc(fpr, tpr)
# # Plot the Confusion Matrix
# plt.figure()
# plt.imshow(confusion, interpolation='nearest', cmap=plt.cm.Blues)
# plt.title('Confusion Matrix')
# plt.colorbar()
# plt.xticks([0, 1], ['Predicted Negative', 'Predicted Positive'])
# plt.yticks([0, 1], ['Actual Negative', 'Actual Positive'])
# thresh = confusion.max() / 2.
# for i in range(2):
# for j in range(2):
# plt.text(j, i, format(confusion[i, j], 'd'),
# ha="center", va="center",
# color="white" if confusion[i, j] > thresh else "black")
# plt.show()
# # Plot Precision-Recall Curve
# plt.figure()
# plt.plot(recall, precision, marker='.')
# plt.title('Precision-Recall Curve')
# plt.xlabel('Recall')
# plt.ylabel('Precision')
# plt.show()
# # Plot ROC Curve
# plt.figure()
# plt.plot(fpr, tpr, marker='.')
# plt.title('ROC Curve')
# plt.xlabel('False Positive Rate')
# plt.ylabel('True Positive Rate')
# plt.show()
# # Print F1 Score
# print(f'F1 Score: {f1:.2f}')
# # Print AUC for ROC Curve
# print(f'ROC AUC: {roc_auc:.2f}')
# Compare the similarity percentage to the threshold
if
similarity_percentage
>=
threshold
:
print
(
"Images are similar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
else
:
print
(
"Images are dissimilar. Similarity: {:.2f}
%
"
.
format
(
similarity_percentage
))
\ No newline at end of file
Project/Backend/Server_Node/prediction_config/default/original_image.jpeg
0 → 100644
View file @
08c7f16f
15.9 KB
Project/Backend/Server_Node/prediction_config/default/user_input_image.jpeg
0 → 100644
View file @
08c7f16f
15.7 KB
Project/Backend/Server_Node/server.js
View file @
08c7f16f
...
...
@@ -4,12 +4,6 @@ import dotenv from "dotenv";
import
express
from
"
express
"
;
import
mongoose
from
"
mongoose
"
;
import
multer
from
"
multer
"
;
// Set up storage for uploaded images
const
storage
=
multer
.
memoryStorage
();
const
upload
=
multer
({
storage
:
storage
});
//import routes
import
curriculumRoutes
from
"
./routes/curriculum.routes.js
"
;
import
feedbackRoutes
from
"
./routes/feedback.routes.js
"
;
...
...
@@ -23,14 +17,18 @@ import userProgressRoutes from "./routes/userProgress.routes.js";
dotenv
.
config
();
const
app
=
express
();
const
corsOptions
=
{
origin
:
'
http://localhost:3000
'
,
origin
:
'
http://localhost:3001
'
,
};
// const corsOptions = {
// origin: 'http://localhost:3000',
// origin: 'http://localhost:3001',
// origin: 'http://localhost:3000',
// origin: 'http://172.28.144.1:3000'
// };
app
.
use
(
bodyParser
.
json
({
limit
:
"
30mb
"
,
extended
:
true
}));
app
.
use
(
bodyParser
.
urlencoded
({
limit
:
"
30mb
"
,
extended
:
true
}));
app
.
use
(
cors
(
corsOptions
));
// app.use(cors(corsOptions));
app
.
use
(
cors
());
//end
app
.
get
(
"
/
"
,
(
req
,
res
)
=>
{
...
...
Project/Backend/Server_Python/resources/audio.wav
View file @
08c7f16f
No preview for this file type
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment